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Abstract 

The concept of dynamic Delauney systems and dynamic 
Voronoi-Dirichlet polyhedra is introduced. By means 
of this concept, the connection between the topology of 
systems with many particles with the presence or 
absence of short-range or long-range order is investi- 
gated. A number of topological criteria for the presence 
or absence of short-range order in model systems of 
'gas' or 'liquid' type are proposed and tested. The 
features of the topology of crystal lattices of chemical 
substances and model multiregular systems of points, 
caused by the presence of long-range order in the 
arrangement of particles, are investigated. 

I. Introduction 

In our previous paper (Blatov, Shevchenko & 
Serezhkin, 1995), we presented the principles of the 
method of topological analysis of the crystal space M 3 
by means of Voronoi-Dirichlet polyhedra (VDP) and 
considered the applications of this method to the 
investigation of some local and global topological 
properties of M 3. The method, mentioned by Blatov, 
Shevchenko & Serezhkin (1995), is applied not only to 
three-dimensional systems of particles but also to 
aperiodic systems with or without short-range order to 
which the Delauney system of a common type 
corresponds. At the same time, if real aperiodic systems 
with many particles (i.e. gases, liquids or plasma) 
existing in thermodynamic equilibrium are considered, 
then limits connected with the necessary consideration 
of the tendency to a maximum of the configuration 
component of the entropy of the system (Sco,f) are 
imposed on the mutual arrangement of particles. It is 
also necessary to take into account the influence of the 
dynamics of the system on its geometric/top©logical 
properties. So, in this case, we again deal with a 
subclass of Delauney systems, which is, however, wider 
than the class of multiregular systems in M 3 and 
includes it as a special case. Consideration of system 
dynamics, which is not usually taken into account when 
M 3 is investigated, also requires extension of the 
concept of a Delauney system and a VDP of points in 
this system. 

2. Dynamic Delauney systems and dynamic VDPs 

We define a dynamic Delauney system as a set of points 
{pi} in R n where some evolution law (i.e. a number of 
rules according to which coordinates of each point Pi 
are changed with time) is given. In contrast to dynamic 
Delauney systems, we shall call Delauney systems in 
the definition of Galiulin (1984) static. It is clear that 
many properties of a dynamic Delauney system have a 
probabilistic nature. For example, in dynamic systems, 
probability distributions, whose image is determined by 
the evolution law, correspond to discreteness (r) and 
covering (R) parameters of static systems and values of 
rmi n (the left limit of distribution of the discreteness 
parameter), Rma X (the right limit of distribution of the 
covering parameter) and corresponding average values 
(r), (R) are significant characteristics of the system. 

The connection between static and dynamic Delauney 
systems can be established with the help of the concept, 
well known in statistical mechanics, of an ensemble of 
systems. In this case, a dynamic Delauney system may 
be considered as an ensemble of static systems and its 
geometric/top©logical characteristics may be averaged 
according to the corresponding characteristics of the 
systems from the ensemble. When local characteristics 
of isolated points of a system (e.g. geometry and 
topology of the first coordination sphere) are of interest, 
it is sufficient to consider only one system from the 
ensemble if the number of points is large enough. The 
algorithm of generation must provide 'randomness' of 
this system, i.e. it must not lay any additional limits on 
the system configuration except those that are given by 
the evolution law of the corresponding dynamic system. 
It is clear that large cardinality of such Delauney 
systems, which will be called 'random', provides 
realization of one of the most probable configurations 
of a dynamic system and if the evolution law supposes 
that in these configurations corresponding characteris- 
tics of a system are similar then the proposed approach 
is quite justified from the statistical point of view. 

The suggested assumption is correct for the majority 
of real systems with many particles in equilibrium (in 
this case characteristics of a random system are close to 
ensemble averages). Therefore, the described method is 
wisely used for investigation of noncrystalline con- 

© 1997 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

Acta Crystallographica Section A 
ISSN 0108-7673 © 1997 



V. A. BLATOV AND V. N. SEREZHKIN 145 

densed phases (Bernal, 1964; Tanaka, 1986a,b) as a 
principal tool of statistical geometry of a set of points 
(Bernal, 1964). The above-mentioned papers are 
devoted to research into the atomic arrangement in 
liquids and amorphous solids to which dynamic 
Delauney systems with the evolution law assuming 
conservation of short-range order in mutual arrange- 
ment of points correspond. At the same time, there are 
no systematic investigations of the influence of change 
of the evolution law on topology of a dynamic Delauney 
system, which at first causes appearance of short-range 
and then long-range order in atomic arrangements and 
corresponds to phase transitions gas-liquid-crystal. The 
influence of cardinality of a random Delauney system on 
reliability of obtained statistical characteristics was not 
investigated either. The goal of our research is to solve 
the above-mentioned problems as far as possible. 

It is natural to introduce the conception of a 
dynamic VDP [H°(p~)] to characterize geometric/ 
topological properties of the nearest arrangement of a 
point Pi in a dynamic Delauney system. H°(p~) is 
defined as a set {Hk(P~)} (i.e. a set of static VDPs) 
from the ensemble of static Delauney systems and the 
weight co k is equal to the probability that the Hk(Pi) 
realization in a dynamic system correspond to each 
Hk(pi)- Thus, //D(pi) is a VDP, averaged on all VDPs 
that are realized for Pi when the system moves within 
the considered time interval. Further, we shall use 
the abbreviation VDP for static Voronoi-Dirichlet 
polyhedra. 

Let the maximum ~o k value (OJmax) be called a 
HO(pi) degree of stability and HO(pi) with COma x -- 1 
be called a stable dynamic VDP. It is clear that a 
stable HO(p/) can be realized only in solids, in which 
there is practically no translational motion of atoms 
and a set {/'-/k(Pi)} possesses limited cardinality. In this 
case, the degree of //°(pi) stability depends on the 
presence or absence of small edges and faces in 
//k(Pi) with Odma x [/-/max(Pi)], identified with regard to 
the value of amplitude of atomic thermal oscillations. 
We note that//max(Pi) may usually be calculated from 
atomic positions obtained as a result of structural 
experiments. However, if an atom pi occupies a 
special position, then the calculated static VDP 
[/-/X-ray(Pi)] may be a result of 'averaging' of some 
/7max(Pi ). A typical example of this is the VDP of an 
atom in a f.c.c, lattice (rhombododecahedron). 

In liquids, gases and plasma, cardinality of {/7k(p~)} 
is not generally limited but when the system reaches 
thermodynamic equilibrium significant stability of 
dynamic VDPs can appear. When the system is 
ergodic (i.e. there are no prohibited domains in its 
configuration space) and possesses large cardinality 
(m), /-/D(pi) may be evaluated from the set of all 
{/Tk(Pi)}, i - - l - m ,  of any static system of the 
corresponding ensemble. HD(pi) may be generated 
for crystal systems, starting from/-/X-ray(P/) and taking 

into account atomic oscillating motion. Initially, two 
'extreme' /7(pi) may be obtained to generate {//k(Pi)}- 
The first one ['bottom', /Tb(p/)] is formed from 
/-/max(Pi) by the contraction of all edges, whose length 
is less than double the amplitude of atomic oscillations 
(200 (Fig. 1) and the other [ ' top',  /-/t(Pi)] is 
constructed by means of the common 'gift wrapping' 
procedure (Blatov, Shevchenko & Serezhkin, 1995) 
after shifting all atoms forming no //x-ray(P/) towards 
Pi also with amplitude 2c~. The rest of the VDPs from 
{/7k(pi)} may be obtained by exhaustion of all variants 
of 'splitting' all vertices of/Tb(p/) with degree v > 3, 
as is demonstrated in Fig. 1, followed by rejection of 
additional [in comparison with /-/X-ray(Pi)] faces of 
/7t(pi ). It should be noted that, with regard to system 
dynamics, in dynamic VDPs the probability of 
occurrence of Hk(p/), which have vertices with 
v > 3, is very small and the //k(Pi) cannot be taken 
into account, although /Tx_ray(Pi) can be one of them 
as in the example mentioned above. 

(a) 

(b) 

Fig. 1. Transformation of a VDP pentagonal dodecahedron (a) into a 
rhombododecahedron (b) by means of 'tightening' small edges 
indicated by bold lines. The rhombododecahedron can be 
transformed into a pentagonal dodecahedron by means of "splitting" 
all vertices with degree v = 4 (shown by arrows). 
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3. Topological criteria for the presence and type of 
order in Delauney system 

At present, it is evident that the only distinct criterion 
for the presence of short-range or long-range order in 
Delauney system is the existence of site or space 
symmetry in a mutual arrangement of points. This 
criterion, connected with metrics of a system, may be 
called the 'geometric' criterion. At the same time, it is 
clear that the order in a system can be observed when 
symmetry is absent. Therefore, new criteria must be 
searched. In the present paper, 'topological' criteria of 
order based on the analysis of Voronoi-Dirichlet 
tessellation (VDT) of a system are proposed and tested. 
We note that, as long as a dynamic system is ergodic, its 
VDT is completely characterized by arbitrary /-/D(pi). 
For non-ergodic systems (e .g .  crystal lattices), all 
/TD(pi) should be considered, i - 1 -Z ,  where Z is the 
number of non-equivalent atoms in a unit cell. Since a 
dynamic VDP characterizes the nearest environment of 
a point in a dynamic Delauney system, it is natural to 
use its characteristics to investigate short-range order in 
the mutual arrangement of points in a system. Among 
such characteristics, we have chosen the distribution of 
a dynamic VDP on the number of faces f [FvDP(f) ] and 
on combinatorially topological types and also the view 
of relationship between a solid angle £2 of the face of a 
dynamic VDP and a distance rat between the corre- 
sponding pair of points. As was shown by Blatov, 
Shevchenko & Serezhkin (1.995), in a static VDP, ,f2 can 
be a measure of the intensity of the interatomic 
interaction, which causes the appearance of short- 
range order. Therefore, the choice of this characteristic 
seems to be perfectly justified. We note that this set of 
characteristics is not complete, since theoretically any 
parameter of a dynamic VDP can characterize short- 
range order to a certain degree. When crystal 
substances with small cardinality of a symmetrically 
independent part of a Delauney system are analyzed, the 
above-mentioned parameters must be averaged on 
dynamic VDPs of different structures, and as a result 
the obtained conclusions may be spread over the whole 
class of investigated substances if we abstract partially 
or completely from their chemical nature. 

At the same time, it is not known a pr io r i  whether 
one can form an opinion about the presence, absence or 
degree of long-range order in a system using the view of 
a dynamic VDP. The present paper is devoted to the 
investigation of this problem too. 

Henceforth, the results are given of the investigation 
of the model, which is analogous to the 'ideal gas' 
system without both long-range and short-range order in 
the mutual arrangement of atoms, considered by Tanaka 
(1986a), of crystal lattices of chemical compounds, 
where both types of order take place, of model 
multiregular systems of points only with long-range 
order and of systems possessing only short-range order. 

Among the latter, there are Lennard-Jones systems with 
the potential 

E(r )  = 4e[( ty /r)  12 -- (or/r)6], 

where attractive forces make the primary contribution 
to the energy of a system under the condition that the 
interatomic distance is r < o-, and also one-component 
Coulomb systems consisting of particles with the same 
sign of charge and characterized by Coulomb potential 
caused only by repulsive forces. Evolution laws of the 
corresponding dynamic Delauney system are deter- 
mined by the system of Newton equations with regard to 
the above-mentioned potentials. It should be noted that, 
strictly speaking, a dynamic Delauney system of the 
'ideal gas' type is characterized by zero value of rmi n 
and by the absence of prohibited domains in configura- 
tion space. However, in the scientific literature, the 
term 'ideal gas' is also used for systems with rmi n > 0, 
which are analogous to systems of hard non-interacting 
spheres with radius rmin/2 (Tanaka, 1986a). In 
Lennard-Jones and Coulomb systems, formally 
rmi n -- 0 but rmi n is actually determined by the repulsive 
part of the potential. 

All calculations were done by means of the program 
package T O P O S  in accordance with the previously 
described methods (Blatov, Shevchenko & Serezhkin, 
1995). 

4. Presence of short-range and long-range order. 
Crystal lattices 

In this section, the results of the analysis of combina- 
torially topological organization of lattices of complex- 
ing atoms, which are accepted as centers of the 
corresponding complex groups in structures of coordi- 
nation compounds of Ti, Zr, Hf, Mo, Th, U and Np, are 
presented. 

We used information from the Cambridge Structural 
Database and the crystal database on actinide com- 
pounds (Blatov & Serezhkin, 1989). The structures of 
4124 compounds of Ti (724), Zr (567), Hf (104), Mo 
(1719), Th (107), U (863) and Np (40) were 
investigated. 

In Table 1, the results of the calculation of the 
Hx_ray(Pi) distribution in accordance with the number of 
faces are given. It is notable that the number of 
structural groups following the Belov 12-neighbors rule 
(Belov, 1976), which /-/X-ray(P/) in the form of a 
dodecahedron corresponds to, is relatively small and 
does not exceed 6% in all cases except uranium 
compounds, whereas the number of tetradecahedra 
varies within a wider range and is minimal for VDPs 
of uranium and neptunium atoms. Only the last two 
samples demonstrate pure inorganic ( i .e .  containing no 
organic carbon) compounds, among them uranates, 
neptunates and uranium oxides with a significant ionic 
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Table 1. Amount of  VDPs with n faces  in percentage o f  
the total number 

Amount (n) of VDP faces 
Element 12 13 14 15 16 17 
Ti 4.1 5.6 58.7 9.9 14.1 2.7 
Zr 2.7 3.8 64.0 7.5 13.3 3.4 
Hf 6.0 3.4 66.4 5.2 13.8 - 
Mo 4.1 2.2 71.4 3.9 13.4 0.9 
Th 2.4 2.4 74.6 4.0 8.7 0.8 
U 11.5 3.4 57.3 5.8 9.6 2.1 
Np 6.0 - 56.0 14.0 6.0 4.0 

Volume 
Other of 

18 VDPs* sampler 
3.3 1.6 958 
3.7 1.6 709 
2.6 2.6 116 
2.5 1.6 1877 
4.0 3.1 126 
2.7 7.6 1060 

10.0 4.0 50 

* Values of n for these VDPs vary from 6 to 11 and from 19 to 22. 
t The data for each crystallographic type of atom, which is given in 
the first column, are taken into account. 

contribution in the bond, belong only to the last two 
samples. To explain this fact, let us consider the model 
of a crystal structure as a packing of  spherical structural 
units of different rigidity (deformability).  The Belov 
12-neighbors rule corresponds to close packing of  hard 
spheres (Fig. 2a).  Soft spheres, mutually deforming 
and trying to fill the whole space, t ransform to VDPs  
(Fig. 2c). Figs. 2(b), (c) show that the value of  sphere 
deformation during construction of the tessellation is 
proportional to the volume of overlapping of  spheres 
(V,,), forming the corresponding space covering. It is 
clear that V o per sphere (Vo~) is 

Vo.~ = v s -  VvDp (1) 

and 

Vos--- VVDp(K c - 1), (2) 

where V s is the volume of a sphere, K c = Vs/Vvt)p is the 
coefficient of  space covering. 

The variants of  close packing of spheres in three- 
dimensional space are well known to crystal chemists 
and explain the realization of the 12-neighbors rule for 
structures of compounds containing rigid structural 

(a) (b) 

(c) 

Fig. 2. (a) Packing, (b) tessellation and (c) covering of the plane. 

groups (corresponding VDPs  of  atoms are rhombodo- 
decahedra).  However ,  the model of  the rarest covering 
of  three-dimensional  space by spheres has not so far  
been covered in the theory of  solids. At the same time, 
it is known (Conway & Sloane, 1988) that in three- 
dimensional space only a b.c .c ,  lattice with the minimal 
value K,. --- 1.46 satisfies such a covering. We note for 
comparison that K c = 2.09 corresponds to the distribu- 
tion of  centers of  spheres on the lattice of  any close 
packing. 

Thus, if soft spherical or quasi-spherical structural 
groups tend to achieve the max imum density of  packing 
(in the case of  absolutely soft groups,  they tend to fill 
the whole space) in accordance with the principle of  
max imum filling (Vainshtein,  Fridkin & Indenbom, 
1983) and the centers of  the spheres are distributed on 
the b.c .c ,  lattice, then, taking (2) into account,  their 
total deformation will be minimal.  With this condition, 
a V D P  has the form of a Fedorov cuboctahedron and the 
number  of  groups surrounding the given one is equal to 
14, i.e. for structures of  coordination compounds,  
containing easily deformable structural groups,  the '14- 
neighbors rule '  must be realized. It should be noted 
that, if separate atoms are the structural units, then the 
greater  their ' softness '  the higher is their ability to 
overlap outer electronic shells when a chemical  bond is 
formed.  In such a case, the model of  crossing spheres 
has a direct physical meaning.  

In Fig. 3, his tograms of  distributions of  uranium- 
containing VDPs ,  depending on the nature of  the 
compounds,  are given. As is shown in Fig. 3, together 
with the change of  the composit ion of  compounds in the 
sequence Fig. 3(a)---~(b)---~(c), the relative amount of  
V D P  dodecahedra increases and that of  V D P  tetra- 
decahedra decreases in the sample. Within the sug- 

% 7 0  - 

6 0 -  

5 0 -  

4 0 -  

3 0 -  

2 0 -  

1 0 -  

O -  
8 12 16 20 8 12 16 20 8 12 16 20 

f (a) (b) (c) 

Fig. 3. Distribution of VDPs on the number of faces (f) in percent of 
the total size of samples, including m uranium compounds. (a) 
Containing organic molecules and ions (m = 579); (b) containing 
only inorganic, including multiatomic, groups (m = 284); (c) 
containing only inorganic mono- and quasimonoatomic (e.g. 
OH-, H20, H30+) ions and molecules (m = 155). 
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Table 2. Amount of VDPs with the determined 
combinatorial properties in percentage of the total 

number in the investigated samples 

The types of VDPs with frequency >3 %, at least for any sample of 
those considered, are given only. In the description of the VDP type, 
the numerator is equal to the number of angles of the face of a 
polyhedron and the denominator is equal to the number of faces of the 
given sort in a polyhedron. The numbers after the braces allow 
differentiation of combinatorially different polyhedra, which have 
identical designation of the type. 

N Type of VDP Ti Zr Hf Mo Th U Np 

I {4/6 6/8} 27.1 29.5 36.2 37.2 45.2 32.3 32.0 
II { 4 / 4 5 / 4 6 / 6 } - 1  11.6 12.0 13.8 15.4 16.7 10.4 16.0 
III {4/4 5/4 6/6} - 2 8.4 8.6 5.2 9.1 5.6 4.5 4.0 
IV {4/3 5/6 6/5} - 1 4.8 4.5 4.3 4.9 3.2 1.9 - 
V {4/3 5/6 6/5}-2 2.0 3.2 5.2 2.9 2.4 1.7 2.0 
VI {3/4 4/2 5/4 

6/2 8/4} 2.2 1.8 1.7 3.4 3.2 2.0 2.0 
VII {4/86/4} 1.9 1.7 1.7 2.6 2.4 5.1 2.0 
VIII {4/66/2} 0.1 0.1 - 0.3 0.8 3.6 2.0 

gested model of deformable spheres, this fact indicates 
that the rigidity of complex groups increases symbatly. 
Actually, complex particles, surrounded by the 'fur' of 
multiatomic organic ligands (L) are deformable owing 
to both the lability of coordination bonds U. • • L and the 
conformational mobility of molecules L themselves. At 
the same time, UO 6- groups, for example, in uranates 
possess stable geometry (Blatov & Serezhkin, 1991) and 
are distortable only to some degree, mainly owing to the 
deformation of the electron shells of oxo ligands. 

Let us consider the tendency of the number of VDPs 
in the form of octahedra and hexahedra (i.e. hexagonal 
prisms and parallelepipeds, respectively) to increase in 
structures of uranium inorganic compounds (Figs. 
3b, c). Analysis of the composition and structure of 
complex uranium-containing groups in these samples 
shows that VDPs in the form of hexagonal prisms are 
realized in substances where structural groups possess 
only two-dimensional (in a plane) deformability and are 
closely connected in a direction that is orthogonal to the 
plane (e.g. chain fluorouranylates and some uranates). 
At the same time, both absolutely rigid and deformable 
groups will be packed according to the same law 
because the optimal packing and covering of two- 
dimensional space are topologically equivalent (Figs. 
2a, b). If 'rigid' bonds U - - L  are directed to the 
vertices of an octahedron (as in the majority of 
uranates), then VDPs mainly in the form of hexahedra 
are realized. 

The data in Table 2 show the existence of VDPs, 
which are 'intermediate' between the Fedorov cubocta- 
hedron and rhombododecahedron. Among them there 
are four types of tetradecahedra and a hexadecahedron 
(II-VI, Table 2). It should be mentioned that the 
presence of rhombododecahedra is not typical for the 
samples considered; dodecahedra with hexagonal faces 
(VII, Table 2), which belong to the set of well known 

Fedorov parallelohedra together with rhombododecahe- 
dron and cuboctahedron, occur much more frequently. 
However, this fact does not contradict the 12-neighbors 
rule because, when it was formulated by Belov (1976), 
the topology of the packing was not taken into 
consideration. If one constructs a scale of rigidity of 
structural groups, where a VDP in the form of a 
rhombododecahedron is unity and a VDP in the form of 
a Fedorov cuboctahedron is - 1 ,  then 'intermediate' 
VDPs will correspond to points within this interval or, 
in other words, to structural groups with intermediate 
rigidity, but verification of this hypothesis requires 
additional investigations. 

In Fig. 4, the dependence of 12(Ru_o) on Ru_ o for 
/-/X-ray(P/), where  Pi are uranium(VI) atoms in 276 
oxygen-containing compounds, is given. Apart from 
abnormally long distances Ru_ o > 3 A, the values of 
Ru_ o that correspond to strong chemical bonds 
(covalent or ionic covalent) in the classical description 
of the structure of U v~ compounds occur on a straight 
line, which may be described by the following r.m.s. 
equations: 

I2(Ru_o) -- 51.2(1) - 16.79 (5)Ru_ o (3) 

or  

In S2(Ru_o) = 5.08 (1) - 1.130 (5)Ru_ o (4) 

with correlation coefficients 0.99 and 0.98, respec- 
tively, for 2525 experimental points with Ru_ o < 3 A. 
In (3) and (4) and in Fig. 4, ,f2(Ru_o) are expressed in 
percent of the total solid angle 4rr sr and Ru_ o in A. It 
should be noted that (4) is analogous to the well known 
Pauling dependence of bond length-bond strength, if 
one considers ,f2 as an analog of bond strength as was 
proposed by Blatov, Shevchenko & Serezhkin (1995). 
The presence of the functional dependence I2(Ru_o) 
reflects the existence of strong U - - O  chemical bonds 

~2{%) 

20 

0 . . . .  i , i 
1 .5  2 . 0  2 . 5  3 . 0  315" r ( A )  

Fig. 4. $'2(Rat ) dependence for VDPs of U atoms in oxygen-containing 
compounds. 
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and, in our opinion, is the effect of short-range order in 
the first coordination sphere of U atoms. 

5. 'Absence' of short-range order. The 'ideal gas' 
system 

For the above-mentioned reasons, we used an ensemble 
consisting of three random Delauney systems with large 
cardinality to investigate the topology of the atomic 
arrangement in 'ideal gas' systems. In order to generate 
every random system from the ensemble, we applied an 
algorithm that is analogous to the one used by Tanaka 
(1986a). In a cubic box with fixed dimensions (the edge 
of the cube is 40-100,~), we generated points with 
pseudo-random coordinates until the average volume 
per point of the Delauney system reached a given value 
while rmi n was varied from 0 to 3.8 ,~,. The maximum 
density of space filling for the corresponding system of 
hard spheres was approximately 37%, which is greater 
than the density of crystal lattices in the majority of 
chemical substances (in particular, for coordination 
compounds, the density of space filling for sublattices of 
complexing atoms is not more than 30%). In this case, 
the cardinality of the system reaches 10000 points and 
rmin/Rma x varies from 0 to 1. The further increase in the 
density of the system is connected with the extreme 
increase of the generation time. The above-mentioned 
range of r/R value variation is typical for the majority 
of static Delauney systems, which correspond to crystal 
lattices of chemical compounds, except for some simple 
substances [in particular, for lattices of close-packed 
metals, r/R = 1.41, and the maximum value 
r/R = 1.55 for lattices in three-dimensional space is 
reached in the case of b.c.c, metals (Galiulin, 1984)]. 

The typical view of FvDp(f) for the 'ideal gas' 
system (m =10000,  rmi n = 3.8A) is given in Fig. 5. 
The spread of all characteristics of FvDP(f), aver- 
aging over the ensemble, when m >_ 1000 did not 
exceed 2%. The results of the calculation of more 
than 200 000 VDPs allow the following conclusions to 
be made: 

25 

% 

20 

10 14 18 f 

Fig. 5. FvDP(f) for the 'ideal gas' system. 

(i) In all investigated samples, F v D P ( f )  is close to a 
normal distribution (more exactly to a polynominal one, 
taking into account its discreteness) with a small 
positive skewness [or > 3cr(~)] because its flatness is 
e = 0 within the tripled standard deviation or(e). 

(ii) When m >_ 1000, independently of rmi n, the value 
of the distribution mode (MF) firmly corresponds to 
pentadecahedra (MF--15), whose relative amount 
increases with increase of m. 

(iii) With increase of cardinality of the Delauney 
system with the given rmin, the value of G 3 (Blatov, 
Shevchenko & Sere.zhkin, 1995) decreases regularly 
(e.g. if rrnin = 3 . 8 A  then G 3 varies from 0.113 at 
m = 100 to 0.0865 at m = 10000). This fact indicates 
increase of system uniformity, which, however, 
remains sufficiently low even at m = 10000. Note 
that, for the most uniform three-dimensional periodic 
system (b.c.c. lattice), G 3 =0.0785 (Conway & 
Sloane, 1988), and, for structures of elementary 
substances mainly with non-directional interactions, 
G 3 < 0.082 (Blatov, Shevchenko & Serezhkin, 1995). 

(iv) Increase of rmi n for systems with identical 
cardinality causes regular increase of system uniformity 
(e.g. at m = 10000, for rmi n = 0,  G 3 = 0 . 1 1 5 ,  and, for 
rmi n = 3 .8  ,~,, G 3 = 0 . 0 8 6 5 ) ,  appearing in particular in a 
decrease skewness and span of distribution of FvDP(f) 
[at rmi n = 0, the left and right limits of FvDp(f) are 
respectively fmi, = 6 and fmax = 29, at rmi . = 3.8 ,~, 

fmin = 8 and fmax = 23]. 
Altogether, the calculation results indicate that the 

increase of density of the 'ideal gas' system and the 
corresponding decrease of (R) at m >__ 1000 influence its 
topological characteristics insignificantly. At the same 
time, when an aperiodic system has small cardinality 
(m < 1000), rules (ii) and (iii), generally speaking, are 
not realized, and oscillations in the values of M F and G 3 
are observed. In our opinion, it indicates the influence 
of periodic boundary conditions on the topology of the 
system at the mentioned m values. 

In our opinion, in order to explain the data obtained, 
one can propose the following model of change of 
/7D(p,) combinatorial properties, where Pi is any point 
( 'atom') of a dynamic Delauney 'ideal gas' system. Let 
us consider an arbitrary VDP from /7°(pi). At some 
instant, this VDP unambiguously determines the first 
coordination sphere and coordination polyhedron of Pi 
[CP(p;)], which is dual to VDP. In this case, the terms 
'coordination sphere' and 'coordination polyhedron' 
have a formal meaning because the interaction between 
atoms is absent. In particular, it is a result of the duality 
of VDP and CP that the number of CP faces is equal to 
the number of VDP vertices. It should be noted that the 
analysis of combinatorial properties of H°(p,.), char- 
acterizing the topology of the 'ideal gas' system, reveals 
the unambiguous dependence between the number of 
VDP faces (CP vertices) ( f )  and the number of VDP 
vertices (CP faces) (v): 
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v- -  2 f -  4, (5) 

indicating that degrees of vertices in all VDPs have the 
minimal possible value, which is 3. In this case, the 
number of edges (e) of the VDP is connected with the 
number of vertices by the formula e -- 3 v / 2  and, using 
Euler's theorem, it is not difficult to get (5). This 
property of the VDP is stipulated by the fact that all 
considered VDPs are common (Shtogrin, 1973), i . e .  

they do not change their combinatorial properties during 
sufficiently small motion of the system. Thus, the 
corresponding CPs possess only triangular faces. 

Assuming that CP can be approached by spheres and 
CP faces have approximately equal sizes, let us consider 
atoms of the second coordination sphere. We note that 
the program D I R I C H L E T  from the program package 
T O P O S  (Blatov, Shevchenko & Serezhkin, 1995) 
allows one to determine the composition of the nth 
arbitrary coordination sphere by constructing a VDP of 
the 'nth degree'. Let us call a VDP in the definition of 
Blatov, Shevchenko & Serezhkin (1995) a VDP of the 
first degree. Then, a VDP of the nth degree is 
constructed analogously but atoms taking part in 
forming all VDPs until the (n - 1)th degree inclusively 
are not taken into account during the 'gift wrapping' 
procedure. Henceforth, we shall use 'VDP'  for the 
designation of a VDP of the first degree. Each atom of 
the second coordination sphere belongs to at least one 
CP surrounding the central one. If all CPs have 
approximately equal size, then up to 13 analogous 
groups can be arranged around the central CP ( i . e .  the 
arrangement of 12 equal spheres around the central one 
always leaves additional free space and in the 
considered model the boundaries of CPs can be 
intersected). In the proposed model, the most probable 
mechanism of acquisition of the additional face by the 
VDP includes penetration of an atom from the second 
coordination sphere into the first one through one of the 
CP faces. The face conforming to this atom 'cuts' the 

Fig. 6. Scheme demonstrating the mechanism of change of 
combinatorial properties of the VDP of atom A during the 
penetration of outer atom B through the CP face into the first 
coordination sphere of atom A. The dashed line indicates the VDP 
face appearing while moving atom B to position B'. 

VDP vertex, corresponding to the CP face, through 
which the attack has been made. For a two-dimensional 
case, an example of the described process is shown in 
Fig. 6. 

An attacking atom can belong to one of the 13 CPs 
surrounding the central one. It can be supposed that 
each of the mentioned CPs possesses one 'active' atom, 
which is capable of attacking the nearest face of the 
central CP. In the most probable state of the considered 
system, all 13 'active' faces of the central CP (if v > 13) 
can be attacked. On the other hand, its 'inactive' faces 
can disappear, pushing out atoms to the second 
coordination sphere and, since all CP faces are 
triangular, elimination of even one atom causes the 
loss of a face. One can assume that CPs with the number 
of active faces, which is equal to the number of inactive 
faces and to 13, will be the most statistically stable. For 
these CPs, v = 26 and VDPs, which are dual to them, 
according to (5) will be pentadecahedra and this is 
observed in practice (Fig. 5). 

Using the proposed model, one can predict the 
bottom (vh) and top (vt)  limits of the typical number 
of CP faces for the 'ideal gas' system. It is clear that 
v b -- 13 but, since the number of CP faces can only be 
even, according to (5), v b -- 12 or 14 fits the threshold 
value. The corresponding VDPs have eight or nine faces 
and this is in good agreement with the data obtained 
(only seven heptahedra were found among more than 
200 000 investigated VDPs). One can evaluate v t, taking 
into account that the maximum number of atoms that are 
capable of penetrating into the first coordination sphere 
of an atom, characterized by the most stable VDP with 
f -  15, is equal to the number of active faces of the 
corresponding CP, i . e .  to 13. Then, v t -- 15 + 13 -- 28, 
which also fits the obtained data (we did not find any 
VDP with f > 28 among the investigated ones). 

'Absence' of short-range order also reflects absence 
of the expressed functional dependence S2(Rat), where 
Rat is the distance between points in a system (Fig. 7) in 
contrast to systems with strong interatomic interactions 
(Fig. 4). During increase of Rat, the spread in $2(Rat ) 
values quickly increases and $2(Rat ) looks like the 
typical shape of a 'tail of a flying up rocket'. However, 

B" B 

O~----- O 

0 2 4 6 8 10 12 r (A) 

Fig. 7. Y2(R~t) dependence for the 'ideal gas' system (n = 155398). 
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absolute chaos is not observed in the distribution of 
points on the plot (the correlation coefficient is equal to 
0.75 for 155 398 points). This fact indicates correlation 
in the atomic arrangements in the system. It is clear that 
this correlation is caused by the presence of short-range 
order of a ' thermodynamic'  type related to the tendency 
of Sconf to go to a maximum. In our opinion, the type of 
S2(Rat ) dependence permits one to distinguish such a 
type of order from one stipulated by a force field. 

In our opinion, the obtained results allow formulation 
of the 15-neighbors rule ,%r dynamic Delauney 'ideal 
gas' systems in addition to the 12- and 14-neighbors 
rules. According to this rule, on condition that long- 
range and short-range order are absent in a dynamic 
Delauney system, the most probable number of points in 
the first coordination sphere of an arbitrary point of the 
system is 15 and the most frequent polyhedron type in 
the system VDT is a pentahedron. It may be supposed 
that the 12- and 14-neighbors rules are the effect of 

conditions. The relaxation time of the systems varied 
from 1 to 2.5 ps with a step of 0.002ps. 

In Figs. 8 and 9, the results are shown of the 
topological analysis of aperiodic systems, modeling 
liquid xenon at the temperature of crystallization 
(161K) and during quenching down to 1K 
(or = 4.06 ik~ e = 2.07 kJ mol -x) and atomic hydrogen 
(or = 0.891 A, g = 0.084 kJ tool -~ , T = 1-300K),  
whose cardinalities were 1000 and 2160 atoms, 
respectively, which allow the influence of boundary 
conditions on the topological properties of " 'DT to be 
neglected, as has been mentioned in §5. During decrease 
of temperature, the density of the 'liquid xenon' system 
was linearly increased up to the value that is typical for 
crystalline xenon. 

As is shown in Figs. 8 and 9, the VDTs of liquid 
xenon and atomic hydrogen (at T < 200K) are 
characterized by the predominance of tetradecahedra 

interatomic and intermolecular interactions, providing 
at least short-range order in the corresponding dynamic 
Delauney system. 

6. Presence of short-range order  

6.1. Lennard-Jones systems 

Dynamic Delauney systems with short-range order 
were generated by the molecular dynamics method 
using the HyperChem program (Autodesk Inc., 1992) in 
a cubic box with edge 20,~ and periodic boundary 

35 T= 161 K T= 120 K T=80 K T=40 K 7"= 1 K 

%3O 

25 
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10 

Fig. 8. &'Dp(f)  for the 'liquid xenon' system. 

40 T=300K T=200K 7= 150K T= I(FOK T=50K 1= K 
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2O 

15 
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Fig. 10. Transformation into pentagonal dodecahedron {5/12} of (a) 
0 ~.,,..,,1,~.: . 1_ . tridecahedron {4/1 5/10 6/2} by means of 'tightening" face [abcd] 

. . . . .  : ' ' : ' ' ' : to edge [ef]; (b) dodecahedron {4/2 5/8 6/2} by means of 
12 16 12 16 12 16 12 16 12 16 12 16 f ' reversing'  edge lab] into edge [cat]. The transformed parts of  the 

Fig. 9. FvD~,(f) for the 'atomic hydrogen'  system, polyhedra are shown as thin lines. 
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Table 3. Distribution of the most frequent combinatorially topological types of VDPs, depending on the 
temperature, of the 'liquid xenon' and 'atomic hydrogen' systems 

Relation- 
Type of VDP* shipt 161 K 

{4/1 5/10 6/2}+ + pd 4.1 
{4/3 5/6 6/4} - 1 in 2.6 
{4/3 5/6 6/5} - 1 in 2.0 
{4/3 5/6 6/4} - 2 in 1.6 
{4/1 5/10 6/3} pd 1.5 
{4/2 5/8 6/4} - 2 pd 1.4 
{4/2 5/8 6/2}++ pd 1.4 
{5/12} pd 1.4 
{4/2 5/8 6/4} - 1 pd 1.3 
{4/4 5/4 6/6} - 2 fc 0.9 
{3/1 5/9 6/3} pd 0.5 
{3/1 4/2 5/6 6/3 7/1} in 0.4 
{4/3 5/6 6/5} - 2 in 0.6 
{4/4 5/4 6/6} - 3 in 0.5 
{4/4 5/4 6/7} in 0.2 
{4/4 5/4 6/6} - 1 in 0.6 
Total amount of the indicated 

types of VDP (%) 21.0 
Total amount of VDP types 575 

'Liquid xenon' system (m = 1000) 'Atomic hydrogen' system (m = 2 1 ~ )  
Amount of VDPs (%) Amount of VDPs (%) 
120K 8 0 K  4 0 K  1 K 3 ~ K  2 ~ K  150K I ~ K  5 0 K  1 K 

4.7 3.7 5.2 4.8 0.8 1.0 1.2 2.3 3.7 5.4 
3.2 2.8 2.7 2.6 0.8 0.8 1.8 2.2 2.9 4.0 
1.7 2.4 2.9 2.0 0.4 0.6 0.9 1.8 2.0 4.0 
2.3 2.7 2.7 3.3 0.6 0.5 0.9 1.2 2.0 2.5 
2.1 1.5 1.5 1.9 0.5 0.2 0.7 1.3 2.1 2.3 
1.8 2.3 1.6 2.0 0.3 0.6 0.9 0.9 1.9 3.0 
1.3 1.4 1.7 1.8 0.6 0.6 0.7 1.3 1.7 1.9 
1.3 1.5 1.9 1.8 0.1 0.1 0.5 0.5 1.2 1.9 
1.5 1.5 2.2 2.5 0.3 0.5 0.7 0.8 1.1 1.9 
1.0 1.1 1.9 1.4 0.2 0.4 0.3 0.4 0.6 1.7 
1.2 1.8 1.0 0.8 0.1 0.3 0.3 0.3 1.1 1.1 
1.7 1.4 1.1 1.1 0.4 0.2 0.4 0.5 1.1 0.6 
0.8 0.9 0.7 0.9 0.2 0.3 0.2 0.5 0.5 1.9 
0.8 0.8 0.8 0.9 0.1 0.2 0.1 0.2 0.5 2.5 
0.8 0.8 0.9 0.9 0.1 0.1 0.2 0.1 0.5 1.8 
1.0 1.2 1.0 1.3 0.2 0.2 0.5 0.5 0.7 1.6 

27.2 27.8 29.8 30.0 5.7 6.6 10.3 14.8 23.6 38.1 
525 484 450 456 1~8  1059 1 ~ 2  1032 699 510 

* Combinatorially topological types, the number of which compose no less than 1.5 % from cardinality (m) of the system, at least for some state, 
are given. ¢ Combinatorially topological relationship: pd with pentagonal dodecahedron; fc with the Fedorov cuboctahedron; in intermediate 
VDPs. :~ Shown in Fig. 10. 

because the mode M r = 14 while F v D P ( f )  is close to 
normal distribution with small positive skewness. Thus, 
if the 15-neighbors rule is typical for systems without 
both short-range and long-range order, then the 14- 
neighbors rule, which is especially clear in periodic 
systems with long-range order, begins to be fulfilled, 
when short-range order appears in the atomic arrange- 
ment. It should be noted that the analogous view of 
Fvop(f)  was observed in the other explored Lennard- 
Jones systems - in liquid noble gases, metals and close- 
packed spheres (Finney, 1970; Tanemura, Hiwatari, 
Matsuda, Ogawa, Ogita & Ueda, 1977; Yamomoto & 
Doyama, 1979; Tanaka, 1986a,b). 

At the same time, the detailed analysis of VDT 
topology shows that the most frequent combinatorially 
topological types in a dynamic VDP are tridecahedra 
with ten pentagonal faces (Fig. 10a, Table 3), which are 
topologically similar to a pentagonal dodecahedron. 
Further, we shall consider topologically similar VDPs 
or VDPs possessing a combinatorially topological 
relationship in a Delauney system, which can be 
transformed into combinatorially equal polyhedra by a 
sufficiently small motion of the system, changing their 
combinatorial properties through the transformation of 
only one of the hyperfaces (i.e. vertex edge or face) 
belonging to these polyhedra into a hyperface with 
different dimensionality or topology. 

Let us call the mentioned elementary act of the 
change of combinatorial properties of a VDP a 
'transformation step'. For example, the VDP shown 
in Fig. 10(a) transforms into a pentagonal dodecahedron 
by means of 'tightening' a quadrangular face [abcd] into 

an edge [ef] (shown by arrows), i.e. by one step. It is 
clear that, during the search of combinatorially 
topological relationships, one-step transformations of 
two VDPs into a combinatorially equal polyhedron can 
be placed by a two-step transformation of one 
polyhedron into another. For example, the VDP in 
Fig. 10(b) can be transformed into a pentagonal 
dodecahedron by 'reversing' the separated edge [ab]. 
This is equivalent to a two-step transformation (first, the 
[ab] edge is 'tightened' into a vertex, then the vertex 
'splits' into the [ca r] edge shown by a thin line). As will 
be shown further, besides VDPs related to a pentagonal 
dodecahedron, polyhedra, which are topologically equal 
to a Fedorov cuboctahedron, play an important role in 
VDT of the considered aperiodic systems. We shall call 
other VDPs, for the transformation of which into one of 
two mentioned 'basic' types of polyhedra more than two 
steps are necessary, as intermediate ones. 

It should be noted that, for the 'liquid xenon' system, 
variation of temperature and density of the system does 
not influence the FvoP(f) (Fig. 8). Whereas, for the 
'atomic hydrogen' system at 300K, M r -- 15, Fvop(f)  
is similar to the distribution that is typical for the 'ideal 
gas' system (Fig. 5), and with the decrease of 
temperature and the corresponding increase of short- 
range order in the system, the maximum of FvoP(f) 
smoothly shifts to the left (Fig. 9) and at T = 1 K 
FvoP(f) is practically symmetric, M e = 14. The shape 
of ~Q(Rat ) dependence (Fig. 11) also changes appreci- 
ably for the 'atomic hydrogen' system, and the growth 
of short-range order is shown in the decrease of the 
spread of Y2(Rat ) values with the decrease of tempera- 



V. A. BLATOV AND V. N. SEREZHKIN 153 

ture (the value of the correlation coefficient increases 
from 0.89 at T -- 300K to 0.95 at T -- 1K). 

The above-mentioned differences in the behavior of 
the systems during the quenching process may be 
explained by the small mass of H atoms in comparison 
with Xe atoms. At the same time, according to the data 
in Table 3, the combinatorial properties of a dynamic 
VDP change during the quenching process for systems 
of both types, while a significant increase of the part of 
VDPs that are topologically similar to a pentagonal 
dodecahedron is observed. Since the mentioned VDPs 
can be transformed into each other even by relatively 
small motions of the system (Fig. 10), the change of 
frequency of each type of VDPs separately with 
variation of temperature is not monotonous on the 
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(c) 
Fig. 11. Change of  S2(R,, t) dependence during temperature decrease in 

the 'atomic hydrogen'  system: (a) T = 300K, n = 31 796; (b) 
T = 150K, n = 31 348; (c) T = 1 K, n = 30332. 

whole (Table 3). At the same time, the decrease of the 
temperature of systems causes a regular increase in the 
total number of all frequent types of VDPs in a dynamic 
VDP of systems and a decrease in the total number of 
combinatorially topological types. This fact can be 
considered as a decrease of the 'combinatorial' 
component of the system entropy. Simultaneously, the 
regular increase of global uniformity of the system 
proceeds. Fig. 12 graphically demonstrates the growth 
of the number of VDPs that are topologically similar to 
a pentagonal dodecahedron during quenching of the 
'atomic hydrogen' system, where the distribution of 
VDP faces on the number of angles is shown. Fig. 12 
shows that a decrease of temperature causes the increase 
of weight of VDPs with pentagonal faces in the system 
VDT and it corresponds to the data (Finney, 1970; 
Tanemura, Hiwatari, Matsuda, Ogawa, Ogita & Ueda, 
1977; Yamomoto & Doyama, 1979; Tanaka, 1986a,b). 
It should be emphasized that, in periodic systems (Fig. 
12h), pentagonal faces do not conform to a distribution 
mode because the most frequent type of VDPs in the 
VDT of a crystal lattice (Fedorov cuboctahedron) 
contains only tetragonal and hexagonal faces. 

Thus, for the considered systems, short-range order 
in the mutual arrangement of atoms is expressed first of 
all in the tendency to icosahedral encirclement of the 
central atom by other atoms in the first coordination 
sphere (because the CP of the central atom is dual to the 
corresponding VDP); this was also mentioned by 
Tanaka (1986a,b). In our opinion, the seeming contra- 
diction between the 14-neighbors rule, which is typical 
for the system as a whole, and the tendency of each 
atom to icosahedral coordination may be solved within a 
statistical model of change of combinatorial properties 
of a dynamic VDP described in §5. It may be supposed 
that short-range order must be observed not only in the 
arrangement of separate atoms but also in the location of 
quasi-spherical CPs of these atoms relative to each 
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Fig. 12. Frequency of VDP faces with the given number of vertices in 
percent of the total size of sample (n). (a) For the 'ideal gas' system 
(n = 155398). For the 'atomic hydrogen'  system (b) at 300K 
(n = 31 796), (c) at 200K (n = 31 538), (d) at 150K (n = 31 348), 
(e) at 100K ( n = 3 1 0 2 8 ) ,  ( f )  at 50K ( n = 3 0 7 4 0 ) ,  (g) at 1K 
(n = 30332). (h) For the sample containing VDPs of complexing 
atoms in sublattices of  crystal structures of coordination com- 
pounds, considered in ~ (n = 72416).  For each of  the eight 
histograms, the value of a step at the x axis corresponds to the 
change of the number of edges of a VDP face for a unit. The 
columns corresponding to pentagonal faces are indicated as black. 
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Table 4. Distribution of the most frequent combina- 
torially topological types of VDPs, depending on the 
density of the 'atomic hydrogen" system (T =5OK, 

Relation- 

m =2160) 

Amount of VDPs (%) at the 
density (g cm -3) 

Type of VDP* ship* 0.295 0.448 0.545 0.850 0.295t 
{4/3 5/6 6/5} - 1 in 0.1 2.0 3.0 5.0 3.5 
{4/1 5/10 6/2} pd 0.8 3.7 5.6 4.1 5.4 
{4/3 5/6 6/4} - I in 0.8 2.9 3.5 3.7 3.0 
{4/3 5/6 6/4} - 2 in 0.4 2.0 2.7 3.0 2.3 
{4/2 5/8 6/4} - i pd 0.2 1.1 2.9 3.0 2.1 
{4/2 5/8 6/4} - 2 pd 0.6 1.9 4.0 2.7 2.3 
{4/4 5/4 6/6} - 1 in 0.2 0.7 1.3 2.5 1.1 
{4/4 5/4 6/6} - 3 in :~ 0.5 1.8 2.5 0.9 
{4/4 5/4 6/6} - 2 fc 0.2 0.6 1.5 2.2 1.5 
{4/4 5/4 6/7} in ~ 0.5 0.9 1.8 1.1 
{4/2 5/8 6/3} pd 0.2 1.3 1.5 1.7 1.2 
{5/12} pd 0.2 1.2 2.2 1.5 2.4 
{4/2 5/8 6/2} pd 0.6 1.7 1.4 1.5 1.4 
{4/1 5/10 6/3} pd 0.1 2.1 2.2 1.5 2.4 
{3/1 5/9 6/3} pd 0.1 1.1 1.3 0.8 1.8 
G 3 x 103 82.9 80.3 7 9 . 6  79.3 79.5 
Total amount of the 

indicated types of 
VDP (%) 4.5 23.3 35.8 37.5 32.4 

Total amount of 
VDP types 1086 699 524 479 569 

* See footnotes to Table 3. t The value e = 84 kJ mol- i conforms to 
the model of packing of 'hard spheres', for other columns of the table, 
e = 0.084 kJ mol- i. :~ < 0.1%. 

other. Such short-range order of the 'second degree'  
results in the fact that only 12 analogous groups will 
mainly surround the central CP but not 13, as in the 
'ideal gas'  system. In this case, according to the 
mentioned model, the central CP will possess 12 
'active' faces and CPs with equal numbers of 'active'  
and 'inactive' faces amounting to 24 will be statistically 
the most stable. The analysis of combinatorial proper- 
ties of VDPs shows the correctness of (5) for them. 
According to this formula, a dual VDP with 24 vertices 
and 14 faces must fit to statistically the most stable CP 
with 24 faces and this is actually observed. 

The increase of density of the 'atomic hydrogen'  
system, modeled by its isothermal compression at 50 K, 
causes an essential change of the combinatorially 
topological organization of a dynamic VDP (Table 4). 
The decrease of 'combinatorial '  entropy is accompanied 
by an appreciable increase in the part of combinatorial 
(equal to Fedorov) cuboctahedra and intermediate 
tetradecahedra and by a reduction of the amount of 
VDPs of pentagonal dodecahedral type. If one links to 
each point in a Lennard-Jones system a van der Waals 
sphere with radius R=½21/6ar, where 2R is the 
equilibrium interatomic distance, then the sphere hard- 
ness k, which is proportional to the curvature of E(r) in 
the minimum point k o~ [d2E(r)/dre]2 R, will be deter- 
mined by the relation e/R 2. Thus, varying the e value at 
constant R, one can model the system of deformable 

spheres with variable hardness. Since in the considered 
'atomic hydrogen'  system e is sufficiently small [the 
potential energy of the system is comparable with the 
energy of thermal motion at 50 K ("-.1465 kJ mo1-1) and 
equal to about 2100kJmol  -~ when the density is 
0 . 4 4 8 g c m  -3] and, thus, van der Waals spheres are 
'soft ' ,  the above-mentioned influence of compression of 
the system on the topology of its VDT fits the qualitative 
model described in §4. At the same time, the 
calculations show that at small deformations short- 
range order of an ' icosahedral '  type is more profitable. 
This fact allows the supposition that the minimum of the 
total overlapping of spheres at the incomplete filling of 
space will be reached at such an arrangement of centers 
of spheres, which VDT, characterized by pentagonal 
dodecahedra or by VDPs combinatorially equal to them, 
corresponds to. Modeling the packing of hard spheres 
(e = 84 kJ mo1-1, Table 4) shows that the total decrease 
of combinatorial entropy and the increase of the system 
uniformity in contrast to the system of soft spheres 
(e = 0.084 kJ mo1-1, Table 4) causes the appearance of 
the aperiodic system, in whose VDT VDPs related to 
pentagonal dodecahedron predominate. 

6.2. One-component Coulomb systems 

We considered the systems consisting of protons at 
m = 2160 and T = 1-300K. The data obtained show 
that the 14-neighbors rule and the similarity of FvoP( f )  
and normal distribution are also typical for one- 
component Coulomb systems. However,  the relative 
amount of tetradecahedra in VDT in contrast to the 
'atomic hydrogen'  system slightly depends on the 
temperature change. This fact may be explained by 
the small value of the energy of thermal motion 
(--~27.2kJmo1-1) in comparison with the energy of 
Coulomb interaction ( ' ~27 .2GJmol - l ) .  The results of 
the calculation of the VDT topology are given in Table 
5. Table 5 shows that the most frequent combinatorially 
topological type of VDPs in dynamic VDPs of  one- 
component Coulomb systems is a Fedorov cubocta- 
hedron, while some types of VDP are combinatorially 
similar to it and can be easily transformed into it, e.g. 
by 'splitting' (Fig. 13a) or by ' reversing'  an edge (Fig. 
13b). The primary realization of the mentioned VDP 
type is explained by taking into account both the model 
of deformable spheres and the principle of uniformity 
(Blatov, Shevchenko & Serezhkin, 1995) because, in 
the presence of long-range central repulsion forces, the 
system tends to global uniformity in the mutual 
arrangement of particles. As was shown by Blatov, 
Shevchenko & Serezhkin (1995), VDTs, which are 
characterized by VDPs in the form of Fedorov 
cuboctahedra, fit with the maximum uniformity of the 
system. It should be noted that the presence of short- 
range van der Waals forces in Lennard-Jones systems 
causes growth of local uniformity because G 3 is less for 



Table 5. Distribution of  the most frequent combina- 
torially topological types of VDPs, depending on the 
charge of H atoms in the 'atomic hydrogen' system 

(T - 1 K, p = 0.448g cm -3, m = 2160) 

Charge of H atoms 
Type of VDP* Relationship* 0.1 0.5 1.0 

{4/6 6/8} fc 0.4 1.3 6.7 
{4/3 5/6 6/5} - 1 in 2.9 5.2 5.7 
{4/4 5/4 6/6} - 1 in 1.2 2.7 5.6 
{4/4 5/4 6/6} - 2t  fc 1.8 3.3 4.9 
{4/3 5/6 6/4} - 1 in 2.9 4.0 4.4 
{4/3 5/6 6/4} - 2 in 2.2 3.2 4.1 
{4/4 5/4 6/6} - 3 in 1.9 2.8 3.4 
{4/1 5/10 6/2} pd 4.2 5.5 3.0 
{4/2 5/8 6/4} - 2 pd 3.0 4.2 2.6 
{4/2 5/8 6/4} - 1 pd 2.0 2.9 2.5 
{4/5 5/2 6/6},t fc 0.7 1.1 2.5 
{4/4 5/4 6/7} in 1.3 1.2 2.0 
{4/5 5/2 6/8} fc 0.5 1.0 2.0 
{4/1 5/10 6/3} pd 2.4 2.3 i.3 
G 3 × 103 79.9 79.3 79.1 
Total amount of the indicated 

types of VDP (%) 27.4 40.7 50.7 
Total amount of VDP types 583 403 383 

* See footnotes to Table 3. t Shown in Fig. 13. 

pentagonal dodecahedra (0.07813) than for Fedorov 
cuboctahedra (0.07854), but global uniformity remains 
less than in one-component Coulomb systems even at 
high density (Tables 4 and 5). It seems that the great 
amount of CPs of an 'icosahedral' type in Lennard- 
Jones systems even at high density and also in packing 
of hard spheres is explained by the short-range 
character of van der Waals interactions. 

6.3. Intermediate systems 
(a) 

In order to investigate the features of competitive 
influence of attractive and repulsive forces on the 
topology of VDTs of an aperiodic system, we 
considered the systems consisting of 2160 H ions with 
positive charge 0 < Qu < 1 at 1 K, while the forces of 
interatomic attraction were modeled by a Lennard-Jones 
potential. Tables 4 and 5 show that the mentioned 
systems are topologically intermediate between 
Coulomb and Lennard-Jones systems. It should be 
noted that the most significant characteristic, reflecting 
the degree of similarity of an intermediate system to one 
of extreme systems, is the part of the Fedorov 
cuboctahedra in its dynamic VDP, regularly increasing 
with the increase of QH- Other types of VDP are rather 
frequently realized in all investigated systems but, 
during the increase of QH values and repulsive forces, 
tetradecahedra that are combinatorially similar to 
Fedorov cuboctahedra begin to predominate among 
combinatorially topological types, although VDPs 
combinatorially related to pentagonal dodecahedra are 
also stored as a significant part in a dynamic VDP of the 
system. It seems to be normal that intermediate 

tetradecahedra are sufficiently frequent at any QH 
value. It should be noted that they (in particular II and 
IV, Table 2) also compose a significant part in the VDTs 
of crystal lattices. 

Realization of the 14-neighbors rule of the aperiodic 
dynamic Delauney system indicates the presence of 
interatomic interaction whose energy is comparable at 
least with the energy of atomic thermal motion. When 
interatomic interaction is strengthened, the number of 
tetradecahedra in the VDT system increases and 
becomes greatest when long-range order and crystal 
structure appear, as is shown in Fig. 9. The predomi- 
nance of Fedorov cuboctahedra in VDTs of crystal 
lattices should be interpreted as a result of the strong 
deformation of structural groups under the influence of 
interatomic attractive forces or as a result of packing of 
slightly deformable structural units in the presence of 
repulsive forces with long-range character. Other types 
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(b) 
Fig. 13. Transformation into Fedorov cuboctahedron {4/6 6/8} of (a) 

tridecahedron {4/5 5/2 6/6} by means of 'splitting' edge [e f ]  into 
face [abccO', (b) tetradecahedron {4/4 5/4 6 / 6 } -  2 by means of 
'reversing' edge [ab] to edge [cd]. The transformed parts of the 
polyhedra are shown as thin lines. 
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Table 6. Cardinality (m) of the independent part of the Delauney system and nsy m value, depending on the mode of 
VDP distribution on the number of faces f for space groups of the monoclinic system 

Space m or Mode (Mr) of VDP distribution on the number of faces 
group COl* MF(1) ?/sym t 8 9 10 11 12 13 14 15 

P2 27 8 m . . . . . . .  20 

rtsyrn 0.84 
/>21 3502 14 m . . . . . .  2 4 

?/syrn 6.7 2.8 
C2 619 14 m . . . . . . .  10 

/'/sym 1.0 
Pm 14 8 m 2 - 3 10 20 40 400 1500 

n.~:~ 5.0 3.6 1.6 1.1 0 .86 0 .40 0.25 
Pc 270 14 m . . . . . .  4 5 

nsy m 3.1 2.4 
Cm 1 I0 8 m - - - 2 20 30 90 1000 

nsy m 4.9  0.95 0.78 0 .50 0.23 
Cc 745 14 m . . . . . . .  10 

r/sy m 0.32 
P2/m 88 8 m 2 - 3 4 10 20 90 500 

nsy m 5.4 4.2 3.5 2.1 1.4 0 .74 0.35 
P21/m 794 8 m - - - 2 20 40 200 500 

nsy m 4.9  1.0 0.81 0.42 0 .30 
C2/m 1434 8 m - - - 2 3 30 40 1500 - 

nsy m 5.7 4.2 0.93 0.81 0.18 
P2/c 460 14 m . . . . . . .  3 2 

nsy  m 5.0 7.5 
P2t/c 21712 14 m . . . . . .  2 3 - 

nsy m 7.1 4.2 
C2/c 4911 16 m . . . . . . .  4 2 

t/sy m 2.7 6.7 

r/sy m is the average number of points that are symmetrically * Frequency of space groups [in accordance with Baur & Kassner (1992)]. 
equivalent to the central point of the VDP and take part in its formation; mli m conforms to m at M r = 15. 

16 

2 
5.6 

2 
7.5 

2 
6.7 

2 
7.2 

of tetradecahedron can appear in the VDTs of systems 
containing slightly deformable particles connected by 
short-range interactions. The fact that tridecahedra, 
which are typical for aperiodic systems, do not exist in 
crystal structures seems to be a result of geometrical/ 
topological problems, appearing at the realization of 
CPs of an 'icosahedral' type in periodic systems. 

7. Presence of long-range order and 'absence' of 
short-range order 

7.1. Multiregular systems 

Apparently, the realization of long-range order, on 
condition that short-range order is absent, is impossible 
in systems with many particles. At the same time, in any 
system with long-range order (e.g. in crystal lattices), 
one can always isolate a subsystem (i.e. sublattice), 
where particles are arranged at distances that are 
sufficiently large to neglect their immediate interaction. 
In such a system, short-range order may be absent. 
Investigation of topological features of such subsystems 
may be useful for the crystal-chemical analysis of 
structures of chemical substances, since, in particular, it 
permits the evaluation of radii of interatomic inter- 
action. 

As an example, we chose space groups of the 
monoclinic system, which are the most frequent in 

structures of chemical substances. In order to generate 
random multiregular Delauney systems, we used the 
generation algorithm for the 'ideal gas' system. The 
differences were in accounting for non-translation space 
symmetry and for variation of the form of the unit cell 

'~ 25 
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6 8 l0 12 14 16 18 20 22 J" 

Fig.  14. Frequency of VDPs with the given number of faces ( f )  in 
percent from the cardinality (n) of the 'ideal gas' system 
(n = l0  000, dashed line) and from the size of the sample containing 
VDPs  of points in 2500 random multiregular Delauney systems with 
m = 3 for space group P21/c (n = 7500, solid line; Fvi~p(f)/f 
values: 0 .3 /8 ;  0 .5 /9 ;  1 .7 / I0 ;  3 .9 /11 ;  6 .7 /12 ;  9 .7 /13 ;  13.1/14;  
14.7/15;  14.5/16; 12.6/17;  9 .8 /18 ;  6 .5 /19 ;  3 .2 /20 ;  1.7/21; 

0 .7 /22 ;  0 .3 /23) .  
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Table 7. Classification of space groups in accordance with the change of features of VDT topology during increase 
of cardinality of the independent part of the corresponding multiregular system 

Mode of FvDp(f)? 
Type Space group mini n AMF* 8 9 10 11 12 13 14 15 16 Symmetry+ 

A1 P21/c 3 1 VC 
A2 P21 4 1 * ' VC 
B C2/c 4 1 < ~ VC 
C C2; Cc; P2/c 3-10 2 • ~ C 
D Pc 5 2 ~ ~ ' C 
E P2 20 8 • ~ ' IC 
F Pm; Cm; P2/m; 500- 7 IC 

P21/m; C2/m 1500 

* A M  F = MF(max~ -- MF(min). ?The change of M r value from MF(I) to  M F ( m l i m )  is shown by arrows. ++ Label indicates that symmetry of the 
given group is 'very convenient' (VC), 'convenient' (C) or 'inconvenient' (IC) for provision of topology transformation of space of condensed 
state during the phase transition liquid < ~ crystal. 

within the considered crystal system. With regard to the 
data obtained on the practical independence of the 
considered topological properties of VDTs from the 
value of the discreteness parameter, rmi n was taken 
equal to 0. Cardinality of the generated systems was 
varied within the range from 2 to 2500 independent 
atoms, a varying step was taken as 1 at m < 10, l0 at 
m < 100, 100 at m < 500 and 500 at m > 500. Some 
independent systems were parallelly generated, whose 
total cardinality was 7000-8000 points for each space 
group. 

The results of the calculations show that at m > 200 
the topology of a random multiregular Delauney 
system is practically independent of its metric and 
density [the deviation in the FvDP(f) values was not 
more than 1%]. Therefore, in the following calcula- 
tions, all systems with m > 200 were generated in a 
pseudocubic unit cell with a specific volume of 500 ~3 
per point. For systems with m < 200, the metric of 
the unit cell and the system density were varied 
randomly within the range, which is typical for 
sublattices of complexing atoms in structures explored 
in ~ (parameters of the monoclinic unit cell and the 
specific volume value were varied in the ranges 
5-25 ,~ and 100-2000,~3, respectively). 

The results obtained (Table 6) indicate that for all 
considered space groups, starting from some limiting 
m value (mlim), the corresponding FvDP(f) are similar 
to a distribution that is typical for an ideal gas. So, all 
FvoP(f )  at m > mli m were found close to a polynomial 
distribution with slightly positive skewness and mode 
M e -- 15, while the distribution of a dynamic VDP on 
combinatorially topological types does not contain 
polyhedra with a frequency of more than 0.5% in all 
cases. For comparison, in Fig. 14, FvDP(f) for an 
ideal gas and for the most frequent space group P2~/c 
with mli m - - 3  are given. Some discrepancies in the 
FvoP(f)  shape (Fig. 14), in accordance with the 
conclusions given in §5, are explained by the influence 
of space symmetry, remaining at m < 1000, which is 
insignificant at m > mli m. It should be noted that the 
error of the found mli m values (Table 6) is determined 

by the above-mentioned values of the step variation of 
the system cardinality at the given m. 

Thus, at m >_ ml~ m, space symmetry practically does 
not influence the topology of a dynamic VDP of the 
system, for which the 15-neighbors rule begins to be 
performed. Since mli m is essentially dependent on the 
considered space group (Table 6), it should be noted 
that it is not practically associated with the F v D P ( f )  

mode in the case of the monosystem basis [MF(1)]. 
Thus, for space groups P2 and Pro, Mr(1 ) = 8, but mji m 
values (20 and 1500, respectively) significantly differ 
from each other. The obligatory condition of the large 
value mli m > 500 realization is the existence of mirror 
planes of symmetry in a space group. At the same time, 
the influence of other closed elements of symmetry on 
mli m is insignificant and it is especially clearly seen in 
P2/c and C2/c groups (Table 6). 

It should be noted that the presence of closed 
elements of symmetry strongly influences the view of 
Mr(m ) dependence, realizing in the considered space 
groups. Thus, for groups containing mirror planes, 
the monotonous increase of MF(m) during the growth 
of m from MF(1 ) - - 8  up to  MF(mlim)= 15 is typical. 
Then, the transition m--+ mli m is accompanied by the 
decrease in the average number of points (nsym) that 
are symmetrically equivalent to the central point of 
the VDP and take part in forming it, from 8 at 
m = 1, to 4 .9-5.7  (i.e. about one half of the total 
number of VDP faces) at m -  2 and down to 0 .18-  
0.35 at m -- mli m. 

For all monoclinic groups containing no m planes but 
including rotation axes 2 (C2/c and its subgroups), 
independent of the MF(1) value, Me(2 ) -- 16, i.e. the 
attainment of MF(mlim) is realized through the inter- 
mediate VDT, containing mainly hexadecahedra. It is 
notable that in groups containing mirror planes there is 
no distribution with M v = 16 at any values of the 
cardinality of the corresponding multiregular Delauney 
system, and as was mentioned above, hexadecahedra 
compose a significant part of the VDT for sublattices of 
complexing atoms in the structures of chemical 
compounds. 
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For regular systems of points of the most frequent 
(frequency oJ i > 1000) space groups of the monoclinic 
system, the value r/sym(mlim)--" 2.7-4.2 is higher than 
for groups containing mirror planes. It is clear that 
the mentioned large nsym(mlim) values indicate the 
absence of essential limits on the nearest environment 
of p; point by the corresponding space symmetry. The 
above-mentioned features of the dependence of the 
topology of the considered multiregular systems are 
given schematically in Table 7, where all investigated 
space groups are divided into six types depending on 
the mli m value, the difference (,4Mr) between the 
maximally and minimally possible values of the 
distribution mode (MF(max) and MF(min), respectively) 
and also on the way of achieving M F = 15 while m 
increases. 

The nsy m value can serve as a quantitative evaluation 
of the space symmetry contribution to forming the 
nearest environment of point Pi in the considered 
Delauney system (i.e. a set of points in the sphere 
with radius 2R and the center at p,, where R is the radius 
of the sphere described around the VDP of p~). Thus, 
the data of Table 7 show that for frequent groups the 
space symmetry does not prevent the mutual chaotic 
arrangement of points, which is typical for an ideal gas, 
i.e. in this case the presence of long-range order in the 
system does not forbid the presence of short-range 
thermodynamic disorder. 

The results obtained allow consideration of the 
problem of causes of different frequencies of mono- 
clinic groups, taking into account not only the number 
of degrees of freedom, which are given to a separate 
packing structural unit within the corresponding space 
symmetry, as has been done previously (Kitaigorodskii, 
1971; Wilson, 1988), but also with regard to 
providing the greatest convenience in the change of 
space topology on the whole during crystallization. 
Actually, for the most frequent space groups, which 
belong to A and B types (Table 7), small values 
mli m - - 3 - 4  are typical, while for rare groups of F 
type, mlirn - -500-1500 .  In other words, even with 
3-4 atoms in a unit cell, groups of A and B types 
allow the space topology that is typical for a liquid 
(because the topology of the VDT of the 'ideal gas' 
system is similar to the topology of a liquid with a 
small interparticle interaction). If the phase transition 
liquid---~crystal is considered as the process for the 
appearance of additional (to those already existing in 
a liquid) correlations in the atomic arrangement, then 
the results given above show that, for the formation 
of a crystal whose symmetry is described by one of 
the frequent symmetry groups, a significant smaller 
number of such correlations (and, therefore, decrease 
of system entropy is smaller in this case) than for a 
crystal with a rare space group is necessary. Thus, 
global topological properties of both liquid and crystal 
space prove to be immediately connected with phase- 

transition thermodynamics. Similarly, the process that 
is the reverse of crystallization may be considered. 
Melting a crystal that belongs to a rare space group is 
possible only after the preliminary increase of m up 
tO mli m and it may be considered as the process of 
amorphization or after the intermediate phase transi- 
tion with a symmetry change to one of the groups that 
are 'convenient' for further melting. At the same 
time, a transition from a crystal that belongs to a 
group with a small mli m to a liquid does not require, 
in principle, intermediate amorphization and deep 
reconstruction of the structure. This fact is also 
reflected by small A M  r values, which are typical for 
such groups. According to the data of Table 7, the 
groups relating to A and B types with A M  F -- 1 and 
mli m - - 3 - 4 ,  in our opinion, may be considered to be 
most 'convenient' ones in the above-mentioned sense, 
the groups with A M  F -- 2 and mli m -- 3-10 (C and D 
types) are rather 'convenient' ones, whereas E and F 
types ( A M  F - "  7-8 and mli m - -20 -1500)  include the 
groups whose symmetry does not provide gradual 
transformation of the space topology during a change 
of the aggregation state of a substance. It is notable 
that only P21/c has the most optimal values of .4M r 
and mlirn criteria and it is the absolute leader in 
frequency of occurrence of all 230 space groups (in 
Table 7, it is isolated to a separate A1 subtype). The 
above-mentioned facts specify the principal meaning 
of the known fifth Pauling rule (Pauling, 1929), 
according to which, in a crystal lattice, the number of 
crystallographically independent but chemically the 
same type of structural components tends to a 
minimum. We note that the fifth Pauling rule does 
not contradict the recent experimental data (Cherni- 
kova, Bel'skii & Zorkii, 1990), according to which 
the number of crystallographically different structural 
units is usually no more than 2-3. 

It is shown in Table 7 that several relatively rare 
space groups (in particular Pc and P2/c)  are 
'convenient' and, on the other hand, the frequent 
C2/m group belongs to the 'inconvenient' F type. 
This fact indicates that the considered criteria of 
similarity of crystal and liquid spaces ( A M  F = 1-2 
and m~, m - 3 - 1 0 )  are only a relevant condition of the 
frequent realization of a space group on the condition of 
localization of structural groups in common positions 
and should be used together with the local criterion of 
convenience of mutual packing of structure-forming 
units (Blatov, Shevchenko & Serezhkin, 1993). In 
particular, P2/c  does not satisfy the packing criteria 
formulated by Blatov, Shevchenko & Serezhkin (1993). 
Pc fits them only on condition that compounds with 
rigid structural groups are crystallized in it and the 
frequent realization of C2/m may be explained by the 
fact that mainly substances with structural units with 
non-trivial symmetry crystallized in this group (Blatov, 
Shevchenko & Serezhkin, 1993). 
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7.2. Atomic sublattices in crystals 

In Fig. 15, the dependence of FvDP(f) for sublattices 
of O atoms in structures of 323 oxygen-containing 
uranium compounds with the mean value (m) = 10.7 is 
given. Its shape is typical for FvDp(f)  at m >_ mli m, 
considered above, with a single difference: its M F is 

% 
7 0 -  

6 0 -  

5 0 -  

4 0 -  

3 0 -  

2 0 -  

 °TL 
0 .  ? , 

8 12 16 
(a) 

A AIL 
i , • v I 

12 16 12 16 f 
(b) (c) 

Fig. 15. Frequency of VDPs with the given number of faces (f) in 
percent from the cardinality (n) of the sample containing VDPs of 
O atoms in the structures of 323 oxygen-containing uranium 
compounds (n = 3464). 
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Fig. 16. S2(R~t) dependence (a) for the sample containing VDPs of 
7500 points in 2500 random multiregular Delauney systems with 
m = 3 for space group P21/c (n = 115677); (b) for the sample 
containing VDPs of 3464 O atoms in sublattices of crystal struc- 
tures of oxygen-containing uranium coordination compounds 
(n = 50179). 

equal to 14, although the mean value of faces ( f )  = 15 
coincides with the value of M F for the 'ideal gas'  system 
(Fig. 5). At the mentioned (m) value (because 
compounds are crystallized in one of the frequent 
space groups, as a rule), one can disregard the influence 
of space symmetry, in accordance with the conclusions 
given in ,~5 and 6. This fact indicates that the sublattice 
of O atoms in the structure of uranium coordination 
compounds is topologically similar to a liquid with 
sufficiently weak forces (of van der Waals type) of 
interatomic interaction. We note that the shape of the 
relationship S2(Rat ) for the mentioned systems (Fig. 16) 
is similar to the analogous dependence for the 'ideal 
gas'  system (Fig. 7). This fact also indicates the absence 
of interatomic interaction and 'non-thermodynamic'  
short-range order in oxygen sublattices. 

8. Conclusions 

The data obtained show that by means of VDPs the 
topological analysis of systems with many particles 
allows conclusions to be made about the presence or 
absence of short-range or long-range order in the 
system. In some cases, one can also detect what caused 
the correlation in the mutual atomic arrangement. At the 
same time, the mechanisms connecting the space 
topology of the system with the features of the force 
field having formed it remain indistinct. In order to find 
them, an intensified crystal chemical analysis of the 
topology of structures of chemical substances with a 
different type of interparticle interaction is required. 
This is the objective of our further research. 
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